SiaLog: detecting anomalies in software execution logs using the siamese network

نویسندگان

چکیده

Abstract Detecting anomalies in software logs has become a notable concern for engineers and maintainers as they represent execution paths states. This paper propose novel anomaly detection approach based on the Siamese network top of Recurrent Neural Networks(RNN). Accordingly, we introduce training pair generation algorithm to train which reduces generated significantly while maintaining $$F_1$$ F 1 score. Additionally, hybrid model by combining with traditional feedforward neural make end-to-end possible, reducing engineering effort setting up deep-learning-based log detector. Furthermore, provides validations Hadoop Distributed File System (HDFS), Blue Gene/L (BGL), map-reduce task datasets. To best our knowledge, proposed outperforms other methods same dataset at scores respectively 0.99, 0.94 HDFS, BGL, datasets, resulting new state-of-the-art performance.To further evaluate method, examine method’s robustness evolutions evaluating synthetically evolved sequences; got score 0.95 HDFS noise ratio $$20\%$$ 20 % . Finally, dive deep into some side benefits network. an unsupervised evolution monitoring method alongside visualization technique that facilitates interpretability.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality Reduction Framework for Detecting Anomalies from Network Logs

Dynamic web services are vulnerable to a multitude of intrusions that could be previously unknown. Server logs contain vast amounts of information about network traffic, and finding attacks from these logs improves the security of the services. In this research features are extracted from HTTP query parameters using 2-grams. We propose a framework that uses dimensionality reduction and clusteri...

متن کامل

Detecting Network Anomalies in Backbone Networks

Uncovering anomalies in large ISPs and enterprise networks is challenging because of the wide variety of such anomalies. They can come from activity with malicious intentions (e.g., scanning, DDoS, prefix hijacking), or from misconfigurations and failures of network components (e.g., link failures, routing problems, outages in measurement equipment). In the literature, the problem of detecting ...

متن کامل

Detecting anomalies in BACnet network data

Over the last few years, the volume of data in the Building Automation System (BAS) networks has increased exponentially. Nowadays, it is possible to obtain several kinds of data from building networks such as data based on individual service type, specific building location and even specific time of the day. As a consequence, large volumes of data with more variables have to be considered when...

متن کامل

analysis of power in the network society

اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Automated software engineering

سال: 2022

ISSN: ['0928-8910', '1573-7535']

DOI: https://doi.org/10.1007/s10515-022-00365-7